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I. Code Description

AdHoCfd is a unified framework for adaptive high-order methods with the main application in Com-
putational Fluid Dynamics. It is written entirely in C++ and makes heavy use of templates to enable a
rapid yet efficient way of incorporating new physical models, discretizations, and solvers. In order to build
exact implicit operators, fluxes and boundary conditions are automatically differentiated using operator
overloading.

Currently, the framework includes a standard and a hybridized discontinuous Galerkin discretization.1–4

For the latter method, the globally coupled unknowns are only defined on the element interfaces, so that
both storage requirements and computational time can be reduced.

The framework is built on top of the finite element package Netgen/Ngsolve5 which provides, among
many other things, meshing capabilities, basis functions of arbitrary order, and quadrature rules for a wide
range of element types. Results can be visualized with Tecplot and Paraview.

We use the scientific computing library PETSc6 to solve the arising linear system in implicit discretizations.
By default, we apply the generalized minimal residual method (GMRES) preconditioned with an incomplete
LU factorization. Besides the matrix orderings already provided by PETSc (including the reverse Cuthill-
McKee algorithm), the (block) minimum discarded fill (MDF) method7 is available. As a nonlinear solver
we employ a damped Newton method with pseudo-transient continuation. In order to further enhance the
robustness of this method, a line search on the residual, physicality checks, and update limiting are available.

Adjoint-based error estimation for various target functionals is readily available to drive hp-adaptation
(both isotropic and anisotropic8 in h).

The two and three-dimensional compressible Euler, Navier-Stokes, and RANS equations are available.
The latter is complemented with the k-ω turbulence model. All equations are in non-dimensional form.

All computations have been performed in serial on a Mac Pro with 2 quad-core Intel Xeon (2.4 Ghz) and
64 GB of shared memory. One work unit corresponds to 10.43 seconds.

II. Case Summary

In this test case, we consider subsonic, laminar flow around a delta wing. The free stream Mach number
is Ma = 0.3, and the Reynolds number based on the mean chord is Remc = 4000. The angle of attack is
α = 12.5◦, the ratio of specific heats is γ = 1.4, and the Prandtl number is given by Pr = 0.72. The viscosity
is assumed to be constant.

We use characteristic upwinding at the farfield boundaries. The delta wing is modeled as an isothermal
no-slip wall with Tw = T∞.

We use our primal HDG solver with polynomial degrees ranging from p = 0 to p = 4 where we initialize a
computation with a lower order solution to enhance convergence (see Fig. 1). The CFL number is initialized
with 1 and gets amplified by a factor of 100 in every Newton step. We consider a computation to be
converged when the l2 norm of the residual is smaller than 10−10. The linear system is solved to a relative
residual tolerance of 10−4. We use 60 Krylov vectors, up to 4 restarted GMRES iterations, and no additional
levels of fill in the ILU factorization. We use a Roe-type of stabilization for convection and a BR2-type of
stabilization for diffusion.
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Figure 1: Residual history for p = 0 . . . 4 on the 3264-element mesh

III. Meshes

We perform computations on the meshes provided by the workshop (ne = 408, 3264, and 26112). Please
note, that these meshes include degenerated elements (quadrilateral boundary faces with two coinciding
vertices and the resulting elements) and zero-measure faces. The first do not pose a problem to our solver.
The latter, however, have to be skipped during assembly.

IV. Results

In order to plot the error in lift and drag coefficients, we use the reference values given by Hartmann
in the second workshop (cD,ref = 0.1658, cL,ref = 0.347). Due to the sharp edges, convergence in these
functionals is suboptimal (between first and second order). Nonetheless, polynomial degrees higher than 1
seem to pay off in accuracy.
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Figure 2: Error with respect to degrees of freedoms
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Table 1: Results and timings for varying meshes and polynomial degrees.

(a) p = 0

ne ndof Cd Cl Work Units

408 408 5.714600·10−1 1.159682·100 1.295617·100

3,264 3,264 4.901848·10−1 8.326553·10−1 1.219846·101

26,112 26,112 3.735303·10−1 5.945640·10−1 1.119394·102

(b) p = 1

ne ndof Cd Cl Work Units

408 3,264 1.949187·10−1 4.208731·10−1 6.451793·100

3,264 26,112 1.755929·10−1 3.715385·10−1 6.854266·101

26,112 208,896 1.703596·10−1 3.585669·10−1 6.697989·102

(c) p = 2

ne ndof Cd Cl Work Units

408 11,016 1.763615·10−1 3.744674·10−1 2.440479·101

3,264 88,128 1.693813·10−1 3.559433·10−1 2.102643·102

26,112 705,024 1.674706·10−1 3.515042·10−1 2.082199·103

(d) p = 3

ne ndof Cd Cl Work Units

408 26,112 1.720822·10−1 3.632558·10−1 8.560951·101

3,264 208,896 1.679395·10−1 3.525893·10−1 6.723989·102

(e) p = 4

ne ndof Cd Cl Work Units

408 51,000 1.699363·10−1 3.568813·10−1 4.370475·102

3,264 408,000 1.672810·10−1 3.511774·10−1 2.438825·103

References
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Figure 3: Error with respect to work units
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